ANALYZING THE POSITIVE AND NEGATIVE ASPECTS OF APPLYING ARTIFICIAL INTELLIGENCE IN PUBLIC HEALTH MANAGEMENT: A FRAMEWORK FOR VIETNAM

Quan Quốc Đăng 1 , , Phan Văn Hùng 2 , Nguyễn Thị Thảo Sương 3
1 Ho Chi Minh City University of Science image/svg+xml
2 Bệnh viện Quân Dân Y Miền Đông
3 Thong Nhat Hospital image/svg+xml
* Corresponding author:

Article Information

Metrics
Downloads: 102 Views: 203
Published
2025-10-10
Section
Review Article
Categories

Download Article

How to Cite

1.
Quốc Đăng Q, Văn Hùng P, Thị Thảo Sương N. ANALYZING THE POSITIVE AND NEGATIVE ASPECTS OF APPLYING ARTIFICIAL INTELLIGENCE IN PUBLIC HEALTH MANAGEMENT: A FRAMEWORK FOR VIETNAM. JHA [Internet]. Vietnam; 2025 Oct. 10 [cited 2025 Dec. 9];1(4):13–20. https://tcsuckhoelaohoa.vn/bvtn/article/view/107 doi: 10.63947/bvtn.v1i4.3
Loading...
Loading citation...

Abstract

Artificial intelligence (AI) is emerging as a disruptive technology with the potential to revolutionize the field of public health management. This study, based on a situational analysis and systematic review, indicates that AI offers significant benefits in disease outbreak forecasting, resource optimization, and supporting human clinical decision-making. However, barriers related to input data quality, algorithmic bias, infrastructure costs, and inadequately regulated legal and ethical issues are persistent challenges for Vietnam. A proposed reference framework for Vietnam, grounded in a review of global research, includes for main pillars for the application of AI in public health management: (1) Data Foundation, (2) Technology and Infrastructure, (3) Human Resources, (4) Legal and Ethical Framework. This framework is expected to be a valuable reference for policymakers, health managers, and technology developers in Vietnam in the field of public health management and community health.

Keywords

Artificial intelligence public health health management Vietnam reference framework AI ethics digital health transformation

References

  1. Luật An ninh mạng số 24/2018/QH14.
  2. Quyết định số 749/QĐ-TTg ngày 03 tháng 6 năm 2020 của Thủ tướng Chính phủ về việc phê duyệt “Chương trình Chuyển đổi số quốc gia đến năm 2025, định hướng đến năm 2030”.
  3. Báo cáo tổng kết công tác phòng, chống dịch COVID-19 (2021), Bộ Y tế.
  4. Báo cáo về tình hình ứng dụng công nghệ thông tin trong ngành y tế (2023), Bộ Y tế.
  5. Davenport T, Kalakota R (2019). The potential for artificial intelligence in healthcare. Future Healthc J., 6(2):94-8. doi: 10.7861/futurehosp.6-2-94.
  6. Doan TTN, Nguyen QK, Taylor-Robinson AW (2023). Healthcare in Vietnam: Harnessing Artificial Intelligence and Robotics to Improve Patient Care Outcomes. Cureus., 15(9):e45006. doi: 10.7759/cureus.45006.
  7. Esteva A, Kuprel B, Novoa RA, Ko J et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639):115-8. doi: 10.1038/nature21056.
  8. Le KH, La TXP, Tykkyläinen M (2022). Service quality and accessibility of healthcare facilities: digital healthcare potential in Ho Chi Minh City. BMC Health Serv Res., 22(1):1374. doi: 10.1186/s12913-022-08758-w.
  9. Matheny ME, Thadaney-Israni S, Atkins D, Israni ST (2019). Artificial Intelligence in Health Care: A Report from the National Academy of Medicine. JAMA, 322(23):2281-2. doi: 10.1001/jama.2019.16913.
  10. Nsoesie EO, Oladeji O, Gesham B (2016). A systematic review of digital surveillance for infectious diseases. Lancet Infect Dis., 16(7):e132-e143.
  11. Obermeyer Z, Powers B, Vogeli C, Mullainathan S (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464):447-53. doi: 10.1126/science.aax2342.
  12. Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems (2018). J Glob Health., 8(2):020303. doi: 10.7189/jogh.08.020303.
  13. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2020 Mar;27(3):491-7. doi: 10.1093/jamia/ocz192.
  14. Shadab A, Sharma S, Singh R. AI in preventive healthcare: A systematic review. Int J Med Inform. 2020 Jun;138:104118.
  15. Topol EJ (2019). High-performance medicine: the convergence of human and artificial intelligence. Nat Med., 25(1):44-56. doi: 10.1038/s41591-018-0300-7.
  16. Vaishya R, Javaid M, Khan IH, Haleem A. Artificial Intelligence (AI) applications for COVID-19 pandemic (2020). Diabetes Metab Syndr., 14(4):337-9. doi: 10.1016/j.dsx.2020.04.012.
  17. World Health Organization (2021). Digital health in the Western Pacific: A review of the past, a vision for the future. Manila: WHO Regional Office for the Western Pacific.

License

© 2025 The Author(s). Published by Journal of Health and Aging.