ANALYZING THE POSITIVE AND NEGATIVE ASPECTS OF APPLYING ARTIFICIAL INTELLIGENCE IN PUBLIC HEALTH MANAGEMENT: A FRAMEWORK FOR VIETNAM
Article Information
Download Article
How to Cite
Abstract
Artificial intelligence (AI) is emerging as a disruptive technology with the potential to revolutionize the field of public health management. This study, based on a situational analysis and systematic review, indicates that AI offers significant benefits in disease outbreak forecasting, resource optimization, and supporting human clinical decision-making. However, barriers related to input data quality, algorithmic bias, infrastructure costs, and inadequately regulated legal and ethical issues are persistent challenges for Vietnam. A proposed reference framework for Vietnam, grounded in a review of global research, includes for main pillars for the application of AI in public health management: (1) Data Foundation, (2) Technology and Infrastructure, (3) Human Resources, (4) Legal and Ethical Framework. This framework is expected to be a valuable reference for policymakers, health managers, and technology developers in Vietnam in the field of public health management and community health.
Keywords
References
- Luật An ninh mạng số 24/2018/QH14.
- Quyết định số 749/QĐ-TTg ngày 03 tháng 6 năm 2020 của Thủ tướng Chính phủ về việc phê duyệt “Chương trình Chuyển đổi số quốc gia đến năm 2025, định hướng đến năm 2030”.
- Báo cáo tổng kết công tác phòng, chống dịch COVID-19 (2021), Bộ Y tế.
- Báo cáo về tình hình ứng dụng công nghệ thông tin trong ngành y tế (2023), Bộ Y tế.
- Davenport T, Kalakota R (2019). The potential for artificial intelligence in healthcare. Future Healthc J., 6(2):94-8. doi: 10.7861/futurehosp.6-2-94.
- Doan TTN, Nguyen QK, Taylor-Robinson AW (2023). Healthcare in Vietnam: Harnessing Artificial Intelligence and Robotics to Improve Patient Care Outcomes. Cureus., 15(9):e45006. doi: 10.7759/cureus.45006.
- Esteva A, Kuprel B, Novoa RA, Ko J et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639):115-8. doi: 10.1038/nature21056.
- Le KH, La TXP, Tykkyläinen M (2022). Service quality and accessibility of healthcare facilities: digital healthcare potential in Ho Chi Minh City. BMC Health Serv Res., 22(1):1374. doi: 10.1186/s12913-022-08758-w.
- Matheny ME, Thadaney-Israni S, Atkins D, Israni ST (2019). Artificial Intelligence in Health Care: A Report from the National Academy of Medicine. JAMA, 322(23):2281-2. doi: 10.1001/jama.2019.16913.
- Nsoesie EO, Oladeji O, Gesham B (2016). A systematic review of digital surveillance for infectious diseases. Lancet Infect Dis., 16(7):e132-e143.
- Obermeyer Z, Powers B, Vogeli C, Mullainathan S (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464):447-53. doi: 10.1126/science.aax2342.
- Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems (2018). J Glob Health., 8(2):020303. doi: 10.7189/jogh.08.020303.
- Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2020 Mar;27(3):491-7. doi: 10.1093/jamia/ocz192.
- Shadab A, Sharma S, Singh R. AI in preventive healthcare: A systematic review. Int J Med Inform. 2020 Jun;138:104118.
- Topol EJ (2019). High-performance medicine: the convergence of human and artificial intelligence. Nat Med., 25(1):44-56. doi: 10.1038/s41591-018-0300-7.
- Vaishya R, Javaid M, Khan IH, Haleem A. Artificial Intelligence (AI) applications for COVID-19 pandemic (2020). Diabetes Metab Syndr., 14(4):337-9. doi: 10.1016/j.dsx.2020.04.012.
- World Health Organization (2021). Digital health in the Western Pacific: A review of the past, a vision for the future. Manila: WHO Regional Office for the Western Pacific.
License
© 2025 The Author(s). Published by Journal of Health and Aging.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
